Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel
نویسندگان
چکیده
Three-dimensional nonlinear thermal and thermo-mechanical numerical simulations are conducted for the friction stir welding (FSW) of 304L stainless steel. The finite element analysis code—WELDSIM, developed by the authors specifically for welding simulation, was used. Two welding cases with tool rotational speeds of 300 and 500 rpm are analyzed. The objective is to study the variation of transient temperature and residual stress in a friction stir welded plate of 304L stainless steel. Based on the experimental records of transient temperature at several specific locations during the friction stir welding process for the 304L stainless steel, an inverse analysis method for thermal numerical simulation is developed. After the transient temperature field is determined, the residual stresses in the welded plate are then calculated using a three-dimensional elastic–plastic thermo-mechanical simulation. The effect of fixture release after the welding on the residual stresses is also studied. Comparison with the residual stress fields measured by the neutron diffraction technique shows that the results from the present numerical simulation have good agreement with the test data. © 2003 Elsevier B.V. All rights reserved.
منابع مشابه
Effects of Friction Stir Processing on the Microstructure and Mechanical Properties of Fusion Welded 304L Stainless Steel
A variation of FSW, friction stir processing (FSP), has been used to modify selected regions of materials to enhance specific properties while eliminating fusion welding defects such as porosity, cracking, and the cast microstructure. The combination of fusion welding defects and high tensile residual stresses caused by the solidification of the molten weld pool adversely affect the post weld s...
متن کاملSimulation of Material Plastic Flow and Morphology During Friction Stir Welding of Stainless Steel to Aluminum Alloy Dissimilar Joint
Today, steel to aluminum joints are used to facilitate transportation and fuel consumption. These joints are applied from nuclear, aerospace and naval to automobile and kitchen industries. According to previous studies fusion welding processes are not suitable methods for these joints, solid-state welding, especially friction stir welding, is a proper way to use for these joints. However, using...
متن کاملSimulation of Material Plastic Flow and Morphology During Friction Stir Welding of Stainless Steel to Aluminum Alloy Dissimilar Joint
Today, steel to aluminum joints are used to facilitate transportation and fuel consumption. These joints are applied from nuclear, aerospace and naval to automobile and kitchen industries. According to previous studies fusion welding processes are not suitable methods for these joints, solid-state welding, especially friction stir welding, is a proper way to use for these joints. However, using...
متن کاملشبیهسازی حرارتی جوشکاری اصطکاکی اغتشاشی اتصال غیرمشابه فولاد زنگنزن 304 به آلومینیوم 5083
Friction stir welding is of the most applicable methods to join dissimilar metals. In this study, the thermal distribution during the joining of 304 stainless steel and 5083 aluminum alloy by friction stir welding method was simulated by the finite element method. Both, transient and stationary thermal solutions were used in the simulations and the two methods were compared correspondingly. To ...
متن کاملFINITE ELEMENT SIMULATION OF HEAT TRANSFER IN FRICTION STIR WELDING OF AL 7050
Friction welding is widely used in various industries. In friction welding, heat is generated by conversion of mechanical energy into thermal energy at the interface the work pieces during pin rotation under pressure. A three-dimensional thermo mechanical simulation of friction stir welding (FSW) processes is carried out for Aluminium Alloys of 6061and 7050 where the simulation results are comp...
متن کامل